O.P.Code: 19HS0851

R19

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations June-2024 SEMICONDUCTOR PHYSICS

(Common to CSE & CSIT)

~~ •		(Common to CSE & CSIT)			
Ti	me	: 3 Hours	Max.	Mark	s: 60
(Answer all Five Units $5 \times 12 = 60$ Marks)					
UNIT-I					
1	a	Describe the electrical conductivity in a metal using quantum free	CO1	L2	8M
		electronic theory.			
	b	Write advantages quantum free electron theory over classical free	CO1	L1	4M
		electron theory.			
		OR			
2	a	Write brief note on Fermi Dirac distribution.	CO1	L1	6M =
	b	Explainis the effect of temperature on Fermi Dirac distribution function.	CO1	L2	6M
		UNIT-II	COI		OIVI
3			~~~		
3	a	What is intrinsic semiconductor?	CO ₂	L1	2M
	D	Derive the expression for intrinsic carrier concentration.	CO ₂	L3	10M
_		OR			
4		Describe the Hall Effect in a semiconductors.	CO ₂	L2	8M
	b	Write the applications of Hall Effect.	CO ₂	L2	4M
		UNIT-III			
5	a	Derive Schrödinger's time independent wave equation.	CO ₃	L3	8M
	b	Explain the physical significance of wave function.	CO ₃	L2	4M
		OR			
6	a	Describe wave & particle nature of matter waves	CO3	L1	4M
			CO3	L2	8M
		UNIT-IV			
7	a	What is population inversion?	CO4	Τ 1	23/
,		Describe the construction and working principle of Nd:YAG Laser.		L1	3M
	I.	OR	CO4	L2	9M
8	9	What is the numerical aperture of an optical fibre and derive an	CO4	т 2	O3.4
O	a	expression for it.	CO4	L3	8M
	h	-	CO 4	T 0	43.5
	U	_	CO4	L3	4M
		index of 1.59. Determine the refractive index of core and the acceptance			
		angle for the fibre in water has a refractive index of 1.33.			
		UNIT-V			
9		Explain why surface area to volume ratio very large for nano materials?	CO ₅	L2	8M
	b	Find the surface area to volume ratio of Sphere using surface area and	CO ₅	L3	4M
	.,	volume calculation for the given radius is 5 meter?			19
		OR			18
10	a	What are the techniques available for synthesizing nanomaterials?	CO5	L1	4M
	b	Explain ball milling technique for synthesis of nanomaterial?	CO5	L2	8M
		*** END ***			

8 Find Laplace Transform of periodic function f(t) with period T, where CO4 L3 12M

$$f(t) = \begin{cases} \frac{4Et}{T} - E & 0 \le t \le \frac{T}{2} \\ 3E - \frac{4E}{T}t, & \frac{T}{2} \le t \le T \end{cases}.$$

UNIT-V

9 a Evaluate $L^{-1}\left\{\int_{s}^{\infty}\log\left(\frac{(u+1)}{(u+1)}\right)du\right\}$.

CO5 L1 6M

b Find the inverse Laplace transform of $\log \left(1 - \frac{a^2}{s^2}\right)$.

CO5 L2 6M

OR

10 Use transform method to solve $y''+2y'+5y=e^{-t}\sin t$, where CO5 L2 12M y(0)=1, y'(0)=1.

*** END ***